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SUMMARY

Approximating convection-dominated diffusion equations requires a very accurate scheme for the convection
term. The most famous is the method of backward characteristics, which is very precise when a good
interpolation procedure is used. However, this method is difficult to implement in 2D or 3D. The goal of this
paper is to show that it is possible to construct finite difference schemes almost as accurate as the method of
characteristics. Starting from a family of second- and third-order Lax—Wendroff-type schemes, a T¥D-and
stable scheme that is easy to implement in higher dimensions is constucted. Numerical tests are performed on
various model problems whose solution is known and on classical problems. Comparisons with some other
limiter schemes and the method of characteristics are discussed.
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1. INTRODUCTION

The aim of this work is to construct efficient schemes to solve the dimensionless convection—
diffusion equation of the form

aC aC ¥#C

a i Ve 0 @
whereu is a function depending only on the space and time variables &nd positive constant that
is very small with respect t§u||,,. Such equations arise, for instance, when a contaminant is spread
out in a porous medium; in this simplified modglis the concentration of the contaminants the
velocity of the saturation fluid and is the diffusion parameter.

During the last 15 years many authors have used the method of characteristics eventually combined
with finite elements or finite differences to solve problems of miscible displacement in porous
medial ™ This method is very accurate but difficult to implement in two or three dimensions. Thus
our purpose is to introduce a new finite difference scheme that is easy to extend to higher dimensions,
stable and accurate enough to avoid instabilities and numerical diffusion. To reach this goal, we build
a TVD scheme following the ideas of Harteand Van Leet from a family of second- and third-order
Lax—Wendroff-type schemes.

After giving the notation and the basis of TVD finite difference schemes, we show that the
convection term must be discretized explicitly. In Section 3 we present the method of backward
characteristics introduced by Holly and Preissmanfhen we construct a TVD version of the
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QUICKTEST or Takacs scheme. Finally we give the extension to 2D and present some numerical
experiments that show the efficiency of our scheme.

2. NOTATION AND PRELIMINARIES

For (x,t) in 10, 1[ x R* we denote bysx andét the space and time steps respectively an€hyhe
approximation ofC(idx, ndt). Let us approximate the equation

aC aC
i + u& =0 )
by an explicit scheme written as
citt=Cl + Ditrl/z(cinﬂ —C") = Di_1,,(C' — CLp). 3)

We recall that a scheme is said to be TVD if
TV(C™Y) < TV(CY),
where
TV(C) = > ICi;; — Cil,
]
and is said to bé&*°-stable if there exists a constashsuch that

max |C'| < d max |C|.
1 1

Here the scheme (3) is TVD if

Di112=0 and D, >0, Vi,
Dit12 + Dijae <1, Vi,
and isL*°-stable if
Di(1,>0 and Di;, >0, Vi,
D12 +Dilyp <1, Vi

Since an explicit scheme requires a CFL condition, it may be interesting to use an implicit scheme
instead, as is done by several authors. However, this is not suitable because it adds some numerical
viscosity. Indeed, let us discretize

o + u§ =0,
dat X
whereu is a positive constant, by
Ci*t =C —uaCl —ClLy) (4a)
or
cMt =P —uacMt —ch (4b)

with a first-order upwind scheme, whete= dt/Jx.
The scheme (4a) is a second-order approximation at pixt(n +%5t) of the equation
()P

a U TN T ) e T
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while the scheme (4b) is a second-order approximation at the same point of the equation
aC , oC ((Sx 5t) #C

2 TU3

+ ox?

ot a
In the first case the limiting CFL conditioku = 1 gives the exact solution without any diffusion,
whereas the diffusion term never vanishes but increasesduith the second case. Thus the latter
scheme is useless, since the space and time steps must be small enough imftorgeifa realistic
solution. Therefore in this paper we approximate the convection term explicitly.

3. THE METHOD OF BACKWARD CHARACTERISTICS

We recall in this section the method of characteristics used for comparisons. First of all, equation (1)
is split into
acC aC

ot + u& =0 (5a)
and
oC 32C

to show off the action of the different terms.

Then the transport equation is solved by the method of characteristicsGuitlenoting the
intermediate approximation.

To determine the value of the approximate solulﬁ_ljﬁl at point & = iéx, t"*! = (n 4 1)dt), the
idea is to seek the origiftxp, t") of the characteristic curve passing by, t"™1).

Equation (5a) can be rewritten as

d -
—C(X,t)=0
dt X.t) =0,

whereX(t) is the characteristic curve given by

d

&X(t) =uX(), 1t (6)
and

CMt = C(xp, t).

Thus the algorithm consists of solving the differential equation (6) and then interpolating
CB = C(xp, t") from the known value€!" and the derivativeéC,);', whereC, = 3C/dx. Equation (6)
can be solved by any appropriate method, e.g. a fourth-order Runge—Kutta algorithm. In contrast, the
interpolation procedure is not straightforward. One of the best methods was introduced by Holly and
Preissmanhand is described below.

Let us assume that is located betweer,_; andx, (Figure ). The first step is to write a third-
order interpolation as

C(xp, t") = 0°(3 — 20)CJ_; + (1 — O)CL + 6%(1 — 0)dX(C,)e_; — O(1 — 0)*x(C,)},
wheref = (x, — Xp)/0ox andC, denotes the first space derivative; an approximatio@,dé obtained
by solving
aC,  aC, #C,

W‘FUW"‘UXCX—VaXZ —0, (7)
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Figure 1. Characteristic curve forx,t) > 0

sinceC satisfies equation (1). Then equation (7) is solved in two fractional steps for the transport and
the diffusion term:

9C, . C,

s + u—ax = —-u,C,, (8a)
aC, #C,
W -V 8X2 =0. (8b)

Integrating (8a) by the characteristic method, one gets
Xi

COr — (ol = —J 0 Cyclt,

Xp
where(C,)p is given by
(Cop = 60(0 — 1)(Cg_y — CR)/dx + 0(30 — 2)(Co)g_y + (1 — O)(1 — 30)(Co)y
and the integral is approximated by a linear quadrature formula; thus
Cott = CORM = vot[(CORTT — 2COR™ + (CRtL] /0%
At the end the solution of (1) is given by

Ct — yot(CME — 2CM 4 Clty /ox% = CI L.

Remark

The choice of the interpolation technique to evaluafedetermines the accuracy of the scheme.
Indeed, the first idea is to interpolate linea@y with C;_; andC}, but the resulting scheme is a first-
order diffusive scheme. Another way is to comp@# from a second-order upwind interpolation
using C7_,, C}_; and C}, which gives a dissipative scheme, whereas the method of Holly and
Preissman yields the optimal approximatiéiglre 2) The numerical data are identical with those of
Figure 7.

4. A NEW FLUX LIMITER SCHEME

In this section we construct a TVD and°-stable scheme from a family of second- or third-ofder
schemes by introducing a new flux limiter, as has been done in previous works on the Lax—Wendroff
scheme.
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Figure 2. Comparison of first order (left), second-order (middle) and Holly—Preissmann (right) interpolations
Takacs has built a family of second- and third-order upwind schemes for equation (2) by writing,
whenu is a positive constant,
CM = oy Cllyy + #oC + 24 ClLy + 0 ,Cl, )

where they, are chosen such that the error

1
e=CXt+At)— Y o C(x+kAX,1)

is O(5t3).
This is achieved by setting
ot2 2 azc 5t3 .3 53 .
C(x,t+ dt) = C(x, t) — ot u (x t)+— ( t) — (x t) + O(tY) (10)
and approximating the three derivatives on the four points chosen wheposmve as
ox 3C ox23°C

—(x t) = [C(x, t) — C(x — Ix, t)]/ox +— > (x,t) — (X, ) + O(5x3),

6 X
5 (6D = [CO+ 0% 1) = 2C(x. 1) + C(x = o, DI/0x* + (),

3
%TS(X, t) = [C(X + X, t) — 3C(x, t) + 3C(X — X, t) — C(x — 20X, 1)]/x® + O(X).

This yields
Au(Au — 1 Au(Au+1
O(l = % — 06_2, ao = 1 — (;LU)Z —+ 30{_2, a_l = % — 3&_2,
whereo_, is determined in order to get the exact solutiondos 0 andiu =1, i.e.
o_p = alu(iu — 1),

with o a non-negative constant.

Thus the scheme (9) reads

AU
ciHt=cf - (C|+1 Cily) +( i (Cl1 —2C +CiLy) (11)

- mu(zu 1)(CP,, — 3C} + 3C), —C'y)
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and is a third-order approximation of the equation

aC aC  ox? a*C
m +u o + 5 u(l — Au)(1 + Au — 6ar) v 0.

Foro = 0 we recognize the Lax—Wendroff scheme andsfet (1 + Au)/6 we obtain a third-order
approximation of equation (2). However, this scheme is neither TVOL ffostable and can generate
some instabilities at singular poirtdn this work we explain how we transform (11) to get a TVD
and L*°-stable scheme and we show in numerical tests the resulting improvement.

Let us rewrite (11) as

AU(1 — Au)
2
+o2u(l = A[(Cl, — CY) — 2(Cf' = CiLy) + (G — CLy)] (12)

CM* =C — (] - ClLy) — (Clia —2C +ClLy)

and let us senCl,, , = Cl\; — C!' andrj,, , = AC]', ,/AC]\, ,; we then obtain

AU(l — Au)
2

+ o du(l — AW[(1 - rin+l/2)ACin+l/2 -(1- rin—l/Z)ACin—l/Z]’ (13)

CML =l — WACR, , — (ACl12 = ACLyp)

since
ACin+1/2 - ZACirLl/Z + AC{L3/2 =(1- rin+l/2)ACin+l/2 -(1- rirLl/Z)ACirLl/Z

According to the sign of the coefficietit— r{, , ,, the last term is either a diffusive or an antidiffusive
term added to the Lax—Wendroff scheme. To get a TVD scheme, we apply the technique of limiters
used by Roe? Sweby" or Van Leef to transform the Lax—Wendroff scheme.
Thus we modify (11) as
AU(l — Au)
2
+ AU(L — AWy 1 2(ACT, 1 /o — ACT 1 5) — 4 )2(AC 4, — AC] 3)0)], (14)

cMt=ch— /IUACin_l/z — (ACijq /0N — ACin—l/z)

where the coefficients,, , are given by (15).

Proposition 1
If

- 11—kl 1
10 = min 15
e | ( 2 21—y l) ()

then the scheme (14) is TVD and°-stable under the CFL conditioh< Au < 1.

Moreover, it is of second order when the solution is smooth enough except on a neighbourhood of
the extremal points.

The proof is based on the classical results beldw.

Lemma

The scheme defined by

Au(l — Zu)

Ci*t =Cf — AAC] ), — f(@wl/ZACFJrl/Z — ¢i_12ACL 1), (16)
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with
Pizrj2 = @(liz12)s
is TVD andL*-stable under the CFL conditidh< Au < 1 if ¢ satisfies
e(r)=0 ifr<0, 0 < @(r) < min(2, 2r) otherwise. 17

Moreover, if ¢ admits left and right derivatives at= 1 and if p(1) = 1, the scheme is of second
order when the solution is smooth enough except on a neighbourhood of the extremal points.
Let us rewrite (14) as

AU(l — Au)
2

[255?+1/2(1 - rinJrl/z)ACinJrl/z - 25‘?—1/2(1 - rin—l/Z)ACin—l/z]- (18)

it =CP — uAC),,, —

AU(l — Au)
T

(ACli1/p — ACLyp)

Then we find (16) be setting
§0in+1/2 =1- 25‘?+1/2(1 - rin+1/2)~

Further, if the coefficients],, , are given by condition (15), thep satisfies (17), since

2 ifr>=2,
CJ14+a-r? ifl<r<2,
o(r) = 2r — r? ifo<r<i, (19)
0 otherwise,

p(l)=1landgp’'(1") =¢'(17) =0.
The last step is to generalize the above scheme for the convection equation isteefunction of
the space variable. In this case we write equation (2) as

where u(x) = ut(x) —u~(x), with u™ and u~ two non-negative functions. Then we apply the
discretization (9) foru™ on pointsx; ., X, X;_; and x;_, and foru~ on pointsx;,,, X;,1, X; and
X;_1. Indeed, wheru is a function ofx, equation (10) becomes

2
Cx,t+ ot) = C(x, t) — 5tu(x)%(x, t) + %u(x)a—i (u(x) %) x, 1)

ot 3 d aC -
~ % u(x)& [u(x)& (u(x) &ﬂ(x, t) + O(t")
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and the derivatives are approximated €or by

ox9*C X2 3C

_(x t) = [C(X,t) — C(X — X, V)]/oX + — 5 2( )_TW

(X, t) + O3,

9 (u*(x) %) x,t) = |:u+ <x + %) [C(x + X, t) — C(X, 1)]

X
—ut (x 52)(>[C(x t) — C(x — X, t)]] / SX2 4 0(6x2),

d d oC X
x [u*(x)& (u*(x) &ﬂ(x, t) = {u*(x)[uJr <x + ?> [C(X + 6%, t) — C(x, 1)]
—ut <x - %) [C(x, 1) — C(x — X, t)]]
—ut(x— c3x)[uJr (x - §) [C(x,t) = C(x — 6%, 1)]

—ut (x — 3—5)(>[C( — OX, t) — C(x — 20X, t)]}/5x3
+ O(0X).

Thus the third-order Takacs scheme reads

Mt =Cf — AU AC) 1, — ui*[(l Ay ) ACT /5 — (1= AUy )ACT 5]

J
+Z u+[(1 — 22uf Uiy )ACH p — (L= 22uf Uiy )ACY

- (1 —ufut 1/2)AC| 12+ Q- A2ufu 32)AC32]

+ Wi AC ), — Eui_[(l Mit12)ACk 1, — (1 — AU ;1 2)ACY 5]

A o o
gl [(1- izui+1ui+3/2)ACin+3/2 -(1- }~2Ui+1ui+1/2)A?+1/2

-1- izui_uijrl/z)ACinH/z +(1- )“zui_ui_—l/Z)ACin—l/Z]-

This scheme is neither TVD nd&r°-stable and we need to introduce the second-order family scheme

A ,
CinJrl = Cl' — U AC. 12— EUiJr[(l - Auitrl/z)Aerl/z Q- )~Ui+—1/z)ACin—1/2]

+ iUi+[<>‘i+1/z(1 - /wi+1/2)ACF+1/2 - O‘ifu/z(l - )~Ui—1/z)ACin—1/2 - 0‘i+—1/2(1 - luitl/z)ACin—l/Z
+ o4 5(1 = Ui 55)ACT 5 5]

- A
+ AU ACin+1/2 - iui [(1- /1U|+1/2)AC|+1/2 (1- ;»Ui—l/z)ACin—l/z]

— AU [0 /2(1 — AUiys2)ACT 370 — i /2(1 — AU /2)ACTH
— o1 0(1 = A1) ACK 1 /5 + 51 2(1 — AUy 2)ACT ] (20)
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Thus, following the same procedure, equation (18) becomes
) 1
Ci*t = C — uFAC] 1275 SU[(A - /“ui_:l/z)ACinJrl/Z -1- /luitl/z)ACirLl/z]

yl , )

+ EU?[Zotiﬂl/z(l — A1) (L = 1 ACT 1 — 20674 5(1 — AU p)(L = 1 )ACT o]
Ao o _ - _

+ Eui [20i31/2(1 — AUiL12)(1 — |+1/2)AC|+1/2 20671 (1 — AU 0)(1 — ri—nl/Z)ACin—l/Z]v

(21)

where

; - Ui )ACT ) N (1 — AUii3,2)AC 55

i+1/2 — ’ i+1/2 — — ’

A (l - luit—l/z)ACin-H/z Y (1 - ’lui+l/2)ACP+l/2
and we replace thez,H/2 by some functlon3x,+1/2 depending onr,H/2 to obtain a TVD and
L*-stable scheme.

Proposition 2
If

+
70, = min( L fisi2 !
i+£1/2 2 2|1 — rij::tnl/zl s

then the resulting scheme is TVD ahé’-stable under the CFL conditiofjju|,, < 1
Proof. We write (21) as

/1
C*t =CP — aufAC) 1275 Ui [(1 — |+1/2)<P|+1/2AC|+1/2 (l—7°Ui+—1/2)(/9i+—nl/2ACirLl/2]

. A . _ _ _
+ AU ACl ) — Ui [(1 = U101 12ACk 12 — (L = A1 )@y pACT 1 o).
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Figure 3. Solution on coarse mesh with third-order Takacs (left) and new (right) schemes
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Figure 4. Comparison of results obtained with minmod (top left), superbee (top right), Van Leer (bottom left) and present
(bottom right) limiters
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Figure 5. Comparison of results obtained on three benchmark probleMgat= % with minmod (top left), superbee (top
right), Van Leer (bottom left) and present (bottom right) limiters

Thus, using the Lemma, we can conclude as for the proof of Proposition 1 that the scheme is TVD
and L -stable under the CFL conditiatjju|,, < 1.

When using a coarse mesh, the third-order Takacs scheme can produce dispersive solutions,
whereas the new scheme avoids non-expected negative values. This can beFsgereiifor the
same data as in Figure 2, except that= 0-02 instead of 1.

Remark

Starting with the Lax—Wendroff scheme, several limiters have been found that satisfy the
hypotheses of the Lemma, e.qg.

¢,(r) = max[0, min(pr, 1), min(r, p)],

with 1 < p < 2, which gives the well-known minmod and superbee limiters o= 1 and 2
respectively*? or

r=+|r|
r = ,
o0 =177

introduced by Van Leef> Here the limitero(r) is naturally derived from the Takacs scheme.
Numerical test performed with the same data as in Figure 2 show that this limiter is better than the
above threeKigure 4. To confirm this result, we performed some numerical experiments on three
benchmark test problems gathered by Leortarfihey correspond to the transport of a unit step, an
isolated sine-squared wave and a semi-ellipse with constant velpeity. The results obtained with
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exactly the same parameters as used by Leonard are plottedjune 5 They show again the
accuracy of the new limiter, which appears to be a good compromise between the Van Leer and
superbee limiters.

5. THE 2D EXTENSION

We consider now the 2D transport equation for a uniform flow= (u,, uy)T, namely

aC
E—FU-VC:O. (22)

The two-dimensional scheme is derived by a Taylor expansion of the solution of (22) where the terms
of order strictly greater, than two are neglected:

2
C(x,y,t+ot) = C(x,y,t) — otU - VC(X,y,t) + %div[D*(U) -VC(x, y, t)] + 0(5t3),

with
2
D*(U)=[ . UXUV}.

2
Uy Ug

We point out that the extra-diagonal terms in etensor couple both directions and avoids strong
grid orientation effects. Thus all fluxes are limited with (19) and we get for a positive velocity

7 Y
Clt =Cj — AUy (1 — ?yuy> ACP 15— Ayuy<1 - ?XUX>ACE 172

Iy

2
ACh . A EN . _EDN. Ny EN . _EDN
+ACLy 1) 2( i+1/2, i-1/2,j) 2( iji+1/2 — Filj—1/2)s

where , = ot/oX, 4, = ét/dy and

Uxuy(ACirLl/z, j-1

n jvy n ;“y n
it1/2,j = W[ 1— maX()“xux’ yu ) - Euy @(riz1/2, PACL 125 + Euxuy(/’(ri+l/2,j—l)ACH—l/Z,j—l:
X

) 2
Filir12 = Uy <1 — max AUy, Ayly) — EXUX) @1 j41/2)AC] 112 + > UgUy@(Fi1 j41,2)ACL 1 ji1/25

with
. _ACi . _AGjap
12 = Am Ll = A
HH2I T ACH M2 TAC 112

Remarks

This scheme i¢.>-stable under the CFL conditiamax(Z,Uy, 4,U,) < 2 Moreover, the extension
whenU depends onix, y) is straightforward.

6. NUMERICAL TESTS

The 1D numerical tests are discussed on a model problem whose solution is known in order to better
compare the performance of the various schemes. We solve equation (1) in the dethal) ith
u(x) = A(1 — Bx), whereA andB are some constants afdis non-negative.

The initial data are given by

C(x, 0) = ag exp[—(bX + Co)°]
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Figure 6. Numerical results with new flux limiter (left) and Holly—Preissmann (right) schemes
and the exact solution is written as
C(x. t) = a(t) exp[—(b(t)x + c(t))’],

wherea(t), b(t) andc(t) are three functions given by the system of differential equations

da dc 9 22\
dt—(cht—ZAbc—va + 4vb°c® Ja =0,

db
a+ABb +2vb® =0,

@+ <b1d—b+AB —|—4vb2>c = Ab,
dt dt
1 1. r
0.9 0.9
0.8 0.8
0.7 [ 7
0.6 0.6
0.5 0.5
0.4 (] q
0.3 0 3
o 2 0.2
0.1 (] 1
0. e 0. [ B
co.1 ! L 1 I o 4 I ] L }
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Figure 7. Numerical results with new flux limiter (left) and Holly—Preissmann (right) schemes
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Figure 8. Transport of 2D square with new flux limiter scheme

with a(0) = a; = 1, b(0) = by, = 10 andc(0) = ¢, = 1. The solution of the above equations is

(|A|B)Y2 exp(ABt)

at) = 75

| —200v + (200v + AB) exp(2ABt)|*/
1/2

b(T) = 10(|A[B) .
| —200v 4 (200v + AB) exp(2ABt)|*/

et = 10]A|2(—1 + exp(ABt))

| —200v 4 (200v + AB) exp(2ABt)|*/2B1/2’
which reduces to
a(t) = 1/(400vt + 1)'/2, b(t) = 10/(400vt + 1)*/2, c(t) = Ath(t)

whenB = 0 (u is a constant function).

For the tests we take small, i.e.v < ||A(1 — BX)||,0X/2.

Whenu is a constant function, it is well known that all the schemes give the exact solution for a
CFL numberN¢r = 1. We takeu = 1, v small in front ofu (v = 10~#), a coarse mes{x = 0-02)
andN¢p = 2. Our new scheme produces results close to those obtained by the Holly—Preissmann
backward characteristics methaddure 9.

When the functionu is equal to u(x)=1-2x, the results obtained withNey =1
(MaXg < x < 1 [UX)[5t/0x < 1) on a medium mestyx = 0-01) and a small diffusion ternpy = 10~%)
are very good. The new flux limiter scheme yields almost the exact solution except at the extrenum
(Figure 9.

A 2D numerical test is performed on a domain (0,X1J0, 1) withox = oy = 0-01 A 2D square of
size10 ox is advected by a diagonal uniform flayy = u, = 0-5. Figure 8shows the initial condition
and the approximate solution at= 1.3 computed withNeg, = 1. We see that there are no grid
orientation effects and only a weak diffusion.
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7. CONCLUSIONS

From a family of second- and third-order Lax—Wendroff-type schemes we build a TVD scheme
corresponding to a new limiter that is more efficient than the classical minmod, superbee and Van
Leer limiters. The results obtained with this scheme are close to those produced by the Holly—
Preissmann backward characteristic method. However, our scheme is much easier to extend to higher
dimensions.

10.

12.
13.

14.
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