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AN ACCURATE FINITE DIFFERENCE SCHEME FOR SOLVING
CONVECTION-DOMINATED DIFFUSION EQUATIONS
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SUMMARY

Approximating convection-dominated diffusion equations requires a very accurate scheme for the convection
term. The most famous is the method of backward characteristics, which is very precise when a good
interpolation procedure is used. However, this method is difficult to implement in 2D or 3D. The goal of this
paper is to show that it is possible to construct finite difference schemes almost as accurate as the method of
characteristics. Starting from a family of second- and third-order Lax–Wendroff-type schemes, a TVD andL?-
stable scheme that is easy to implement in higher dimensions is constucted. Numerical tests are performed on
various model problems whose solution is known and on classical problems. Comparisons with some other
limiter schemes and the method of characteristics are discussed.
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1. INTRODUCTION

The aim of this work is to construct efficient schemes to solve the dimensionless convection–
diffusion equation of the form

@C

@t
� u

@C

@x
ÿ n

@
2C

@x2
� 0; �1�

whereu is a function depending only on the space and time variables andn is a positive constant that
is very small with respect tokuk

1

. Such equations arise, for instance, when a contaminant is spread
out in a porous medium; in this simplified modelC is the concentration of the contaminant,u is the
velocity of the saturation fluid andn is the diffusion parameter.

During the last 15 years many authors have used the method of characteristics eventually combined
with finite elements or finite differences to solve problems of miscible displacement in porous
media.1–4 This method is very accurate but difficult to implement in two or three dimensions. Thus
our purpose is to introduce a new finite difference scheme that is easy to extend to higher dimensions,
stable and accurate enough to avoid instabilities and numerical diffusion. To reach this goal, we build
a TVD scheme following the ideas of Harten5 and Van Leer6 from a family of second- and third-order
Lax–Wendroff-type schemes.

After giving the notation and the basis of TVD finite difference schemes, we show that the
convection term must be discretized explicitly. In Section 3 we present the method of backward
characteristics introduced by Holly and Preissmann.7 Then we construct a TVD version of the
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QUICKTEST8 or Takacs9 scheme. Finally we give the extension to 2D and present some numerical
experiments that show the efficiency of our scheme.

2. NOTATION AND PRELIMINARIES

For �x; t� in �0; 1� �R� we denote bydx anddt the space and time steps respectively and byCn
i the

approximation ofC�idx; ndt�. Let us approximate the equation

@C

@t
� u

@C

@x
� 0 �2�

by an explicit scheme written as

Cn�1
i � Cn

i � D�

i�1=2�C
n
i�1 ÿ Cn

i � ÿ Dÿ

iÿ1=2�C
n
i ÿ Cn

iÿ1�: �3�

We recall that a scheme is said to be TVD if

TV �Cn�1
�4TV �Cn

�;

where

TV �C� �
P

i
jCi�1 ÿ Cij;

and is said to beL1-stable if there exists a constantd such that

max
i

jCn
i j4 d max

i
jC0

i j:

Here the scheme (3) is TVD if

D�

i�1=2 5 0 and Dÿ

iÿ1=2 5 0; 8i;

D�

i�1=2 � Dÿ

i�1=2 4 1; 8i;

and isL1-stable if

D�

i�1=2 5 0 and Dÿ

iÿ1=2 5 0; 8i;

D�

i�1=2 � Dÿ

iÿ1=2 4 1; 8i:

Since an explicit scheme requires a CFL condition, it may be interesting to use an implicit scheme
instead, as is done by several authors. However, this is not suitable because it adds some numerical
viscosity. Indeed, let us discretize

@C

@t
� u

@C

@x
� 0;

whereu is a positive constant, by

Cn�1
i � Cn

i ÿ ul�Cn
i ÿ Cn

iÿ1� �4a�

or

Cn�1
i � Cn

i ÿ ul�Cn�1
i ÿ Cn�1

iÿ1 � �4b�

with a first-order upwind scheme, wherel � dt=dx.
The scheme (4a) is a second-order approximation at point�idx; �n � 1

2 dt� of the equation

@C

@t
� u

@C

@x
ÿ u

dx

2
ÿ u

dt

2

� �

@
2C

@x2
� 0;
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while the scheme (4b) is a second-order approximation at the same point of the equation

@C

@t
� u

@C

@x
ÿ u

dx

2
� u

dt

2

� �

@
2C

@x2
� 0:

In the first case the limiting CFL conditionlu � 1 gives the exact solution without any diffusion,
whereas the diffusion term never vanishes but increases withdt in the second case. Thus the latter
scheme is useless, since the space and time steps must be small enough in front ofn to get a realistic
solution. Therefore in this paper we approximate the convection term explicitly.

3. THE METHOD OF BACKWARD CHARACTERISTICS

We recall in this section the method of characteristics used for comparisons. First of all, equation (1)
is split into

@C

@t
� u

@C

@x
� 0 �5a�

and

@C

@t
ÿ n

@
2C

@x2
� 0 �5b�

to show off the action of the different terms.
Then the transport equation is solved by the method of characteristics with�C denoting the

intermediate approximation.
To determine the value of the approximate solution�Cn�1

i at point (xi � idx; tn�1
� �n � 1�dt�, the

idea is to seek the origin�xP; tn
� of the characteristic curve passing by�xi; tn�1

�.
Equation (5a) can be rewritten as

d
dt

�C�X ; t� � 0;

whereX �t� is the characteristic curve given by

d
dt

X �t� � u�X �t�; t� �6�

and

�Cn�1
i � C�xP; tn

�:

Thus the algorithm consists of solving the differential equation (6) and then interpolating
Cn

P � C�xP; tn
� from the known valuesCn

i and the derivatives�Cx�
n
i , whereCx � @C=@x. Equation (6)

can be solved by any appropriate method, e.g. a fourth-order Runge–Kutta algorithm. In contrast, the
interpolation procedure is not straightforward. One of the best methods was introduced by Holly and
Preissmann7 and is described below.

Let us assume thatxP is located betweenxkÿ1 andxk (Figure 1). The first step is to write a third-
order interpolation as

C�xP; tn
� � y2

�3 ÿ 2y�Cn
kÿ1 � �1 ÿ y�Cn

k � y2
�1 ÿ y�dx�Cx�

n
kÿ1 ÿ y�1 ÿ y�2dx�Cx�

n
k;

wherey � �xk ÿ xP�=dx andCx denotes the first space derivative; an approximation ofCx is obtained
by solving

@Cx

@t
� u

@Cx

@x
� uxCx ÿ n

@
2Cx

@x2
� 0; �7�
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sinceC satisfies equation (1). Then equation (7) is solved in two fractional steps for the transport and
the diffusion term:

@Cx

@t
� u

@Cx

@x
� ÿuxCx; �8a�

@Cx

@t
ÿ n

@
2Cx

@x2
� 0: �8b�

Integrating (8a) by the characteristic method, one gets

�

~Cx�
n�1
k ÿ �Cx�

n
P � ÿ

�xi

xP

uxCxdt;

where�Cx�
n
P is given by

�Cx�
n
P � 6y�yÿ 1��Cn

kÿ1 ÿ Cn
k �=dx � y�3yÿ 2��Cx�

n
kÿ1 � �1 ÿ y��1 ÿ 3y��Cx�

n
k

and the integral is approximated by a linear quadrature formula; thus

�

~Cx�
n�1
k � �Cx�

n�1
k ÿ ndt �Cx�

n�1
kÿ1 ÿ 2�Cx�

n�1
k � �Cx�

n�1
k�1

� �

=dx2
:

At the end the solution of (1) is given by

Cn�1
i ÿ ndt�Cn�1

iÿ1 ÿ 2Cn�1
i � Cn�1

i�1 �=dx2
�

�Cn�1
i :

Remark

The choice of the interpolation technique to evaluateCn
P determines the accuracy of the scheme.

Indeed, the first idea is to interpolate linearlyCn
P with Cn

kÿ1 andCn
k , but the resulting scheme is a first-

order diffusive scheme. Another way is to computeCn
P from a second-order upwind interpolation

using Cn
kÿ2;Cn

kÿ1 and Cn
k , which gives a dissipative scheme, whereas the method of Holly and

Preissman yields the optimal approximation (Figure 2). The numerical data are identical with those of
Figure 7.

4. A NEW FLUX LIMITER SCHEME

In this section we construct a TVD andL1-stable scheme from a family of second- or third-order8,9

schemes by introducing a new flux limiter, as has been done in previous works on the Lax–Wendroff
scheme.

Figure 1. Characteristic curve foru�x; t�5 0
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Takacs9 has built a family of second- and third-order upwind schemes for equation (2) by writing,
whenu is a positive constant,

Cn�1
i � a1Cn

i�1 � a0Cn
i � a

ÿ1Cn
iÿ1 � a

ÿ2Cn
iÿ2; �9�

where theak are chosen such that the error

e � C�x; t � Dt� ÿ
P
1

k�ÿ2
akC�x � kDx; t�

is o�dt3
�.

This is achieved by setting

C�x; t � dt� � C�x; t� ÿ dt u
@C

@x
�x; t� �

dt2

2
u2 @

2C

@x2
�x; t� ÿ

dt3

6
u3 d

3C

dx3
�x; t� � o�dt4

� �10�

and approximating the three derivatives on the four points chosen whenu is positive as

@C

@x
�x; t� � �C�x; t� ÿ C�x ÿ dx; t��=dx �

dx

2
@

2C

@x2
�x; t� ÿ

dx2

6
@

3C

@x3
�x; t� � o�dx3

�;

@
2C

@x2
�x; t� � �C�x � dx; t� ÿ 2C�x; t� � C�x ÿ dx; t��=dx2

� o�dx2
�;

@
3C

@x3
�x; t� � �C�x � dx; t� ÿ 3C�x; t� � 3C�x ÿ dx; t� ÿ C�x ÿ 2dx; t��=dx3

� o�dx�:

This yields

a1 �
lu�lu ÿ 1�

2
ÿ a

ÿ2; a0 � 1 ÿ �lu�2 � 3a
ÿ2; a

ÿ1 �
lu�lu � 1�

2
ÿ 3a

ÿ2;

wherea
ÿ2 is determined in order to get the exact solution foru � 0 andlu � 1, i.e.

a
ÿ2 � alu�lu ÿ 1�;

with a a non-negative constant.
Thus the scheme (9) reads

Cn�1
i � Cn

i ÿ
lu

2
�Cn

i�1 ÿ Cn
iÿ1� �

�lu�2

2
�Cn

i�1 ÿ 2Cn
i � Cn

iÿ1�

ÿ alu�lu ÿ 1��Cn
i�1 ÿ 3Cn

i � 3Cn
iÿ1 ÿ Cn

iÿ2�

�11�

Figure 2. Comparison of first order (left), second-order (middle) and Holly–Preissmann (right) interpolations
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and is a third-order approximation of the equation

@C

@t
� u

@C

@x
�

dx2

6
u�1 ÿ lu��1 � lu ÿ 6a�

@
3C

@x3
� 0:

For a � 0 we recognize the Lax–Wendroff scheme and fora � �1 � lu�=6 we obtain a third-order
approximation of equation (2). However, this scheme is neither TVD norL1-stable and can generate
some instabilities at singular points.9 In this work we explain how we transform (11) to get a TVD
andL1-stable scheme and we show in numerical tests the resulting improvement.

Let us rewrite (11) as

Cn�1
i � Cn

i ÿ lu�Cn
i ÿ Cn

iÿ1� ÿ
lu�1 ÿ lu�

2
�Cn

i�1 ÿ 2Cn
i � Cn

iÿ1�

� alu�1 ÿ lu���Cn
i�1 ÿ Cn

i � ÿ 2�Cn
i ÿ Cn

iÿ1� � �Cn
iÿ1 ÿ Cn

iÿ2�� �12�

and let us setDCn
i�1=2 � Cn

i�1 ÿ Cn
i andrn

i�1=2 � DCn
iÿ1=2=DCn

i�1=2; we then obtain

Cn�1
i � Cn

i ÿ luDCn
iÿ1=2 ÿ

lu�1 ÿ lu�

2
�DCn

i�1=2 ÿ DCn
iÿ1=2�

� alu�1 ÿ lu���1 ÿ rn
i�1=2�DCn

i�1=2 ÿ �1 ÿ rn
iÿ1=2�DCn

iÿ1=2�; �13�

since

DCn
i�1=2 ÿ 2DCn

iÿ1=2 � DCn
iÿ3=2 � �1 ÿ rn

i�1=2�DCn
i�1=2 ÿ �1 ÿ rn

iÿ1=2�DCn
iÿ1=2:

According to the sign of the coefficient1 ÿ rn
i�1=2, the last term is either a diffusive or an antidiffusive

term added to the Lax–Wendroff scheme. To get a TVD scheme, we apply the technique of limiters
used by Roe,10 Sweby11 or Van Leer6 to transform the Lax–Wendroff scheme.

Thus we modify (11) as

Cn�1
i � Cn

i ÿ luDCn
iÿ1=2 ÿ

lu�1 ÿ lu�

2
�DCi�1=2n ÿ DCn

iÿ1=2�

� lu�1 ÿ lu���an
i�1=2�DCn

i�1=2 ÿ DCn
iÿ1=2� ÿ �an

iÿ1=2�DCn
iÿ1=2 ÿ DCn

iÿ3=2��; �14�

where the coefficients�an
i�1=2 are given by (15).

Proposition 1

If

�an
i�1=2 � min

j1 ÿ rn
i�1=2j

2
;

1
2j1 ÿ rn

i�1=2j

 !

; �15�

then the scheme (14) is TVD andL1-stable under the CFL condition04lu4 1.
Moreover, it is of second order when the solution is smooth enough except on a neighbourhood of

the extremal points.
The proof is based on the classical results below.12

Lemma

The scheme defined by

Cn�1
i � Cn

i ÿ luDCn
iÿ1=2 ÿ

lu�1 ÿ lu�

2
�ji�1=2DCn

i�1=2 ÿ jiÿ1=2DCn
iÿ1=2�; �16�
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with

ji�1=2 � j�ri�1=2�;

is TVD andL1-stable under the CFL condition04lu4 1 if j satisfies

j�r� � 0 if r < 0; 04j�r�4min�2; 2r� otherwise: �17�

Moreover, ifj admits left and right derivatives atr � 1 and ifj�1� � 1, the scheme is of second
order when the solution is smooth enough except on a neighbourhood of the extremal points.

Let us rewrite (14) as

Cn�1
i � Cn

i ÿ luDCn
iÿ1=2 ÿ

lu�1 ÿ lu�

2
�DCn

i�1=2 ÿ DCn
iÿ1=2�

�

lu�1 ÿ lu�

2
�2�an

i�1=2�1 ÿ rn
i�1=2�DCn

i�1=2 ÿ 2�an
iÿ1=2�1 ÿ rn

iÿ1=2�DCn
iÿ1=2�: �18�

Then we find (16) be setting

jn
i�1=2 � 1 ÿ 2�an

i�1=2�1 ÿ rn
i�1=2�:

Further, if the coefficients�an
i�1=2 are given by condition (15), thenj satisfies (17), since

j�r� �

2
1 � �1 ÿ r�2

2r ÿ r2

0

if r5 2;
if 14 r4 2;
if 04 r4 1;
otherwise;

8

>
>
<

>
>
:

�19�

j�1� � 1 andj0

�1�� � j0

�1ÿ� � 0.
The last step is to generalize the above scheme for the convection equation whenu is a function of

the space variable. In this case we write equation (2) as

@C

@t
� u�

@C

@x
ÿ uÿ

@C

@x
� 0;

where u�x� � u��x� ÿ uÿ�x�, with u� and uÿ two non-negative functions. Then we apply the
discretization (9) foru� on points xi�1; xi; xiÿ1 and xiÿ2 and for uÿ on points xi�2; xi�1; xi and
xiÿ1. Indeed, whenu is a function ofx, equation (10) becomes

C�x; t � dt� � C�x; t� ÿ dtu�x�
@C

@x
�x; t� �

dt2

2
u�x�

@

@x
u�x�

@C

@x

� �

�x; t�

ÿ

dt3

6
u�x�

@

@x
u�x�

@

@x
u�x�

@C

@x

� �� �

�x; t� � o�dt4
�
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and the derivatives are approximated foru� by

@C

@x
�x; t� � �C�x; t� ÿ C�x ÿ dx; t��=dx �

dx

2
@

2C

@x2
�x; t� ÿ

dx2

6
@

3C

@x3
�x; t� � o�dx3

�;

@

@x
u��x�

@C

@x

� �

�x; t� �

�

u� x �
dx

2

� �

�C x � dx; t� � ÿ C x; t� ��

ÿ u� x ÿ
dx

2

� �

C x; t� � ÿ C x ÿ dx; t� �� �

��

dx2
� o dx2

ÿ �

;

@

@x
u� x� �

@

@x
u� x� �

@C

@x

� �� �

x; t� � � u� x� �

�

u� x �
dx

2

� �

�C x � dx; t� � ÿ C x; t���

�

ÿ u� x ÿ
dx

2

� �

C x; t� � ÿ C x ÿ dx; t� �� �

�

ÿ u��x ÿ dx� u� x ÿ
dx

2

� �

C x; t� � ÿ C x ÿ dx; t� �� �

�

ÿ u� x ÿ
3dx

2

� �

�C x ÿ dx; t� � ÿ C x ÿ 2dx; t� ��

�

=dx3

� o�dx�:

Thus the third-order Takacs scheme reads

Cn�1
i � Cn

i ÿ lu�i DCn
iÿ1=2 ÿ

l

2
u�i ��1 ÿ lu�i�1=2�DCn

i�1=2 ÿ �1 ÿ lu�iÿ1=2�DCn
iÿ1=2�

�

l

6
u�i ��1 ÿ l2u�i u�i�1=2�DCn

i�1=2 ÿ �1 ÿ l2u�i u�iÿ1=2�DCn
iÿ1=2

ÿ �1 ÿ l2u�iÿ1u�iÿ1=2�DCn
iÿ1=2 � �1 ÿ l2u�iÿ1u�iÿ3=2�DCn

iÿ3=2�

� luÿi DCn
i�1=2 ÿ

l

2
uÿi ��1 ÿ luÿi�1=2�DCn

i�1=2 ÿ �1 ÿ luÿiÿ1=2�DCn
iÿ1=2�

ÿ

l

6
uÿi ��1 ÿ l2uÿi�1uÿi�3=2�DCn

i�3=2 ÿ �1 ÿ l2uÿi�1uÿi�1=2�D
n
i�1=2

ÿ �1 ÿ l2uÿi uÿi�1=2�DCn
i�1=2 � �1 ÿ l2uÿi uÿiÿ1=2�DCn

iÿ1=2�:

This scheme is neither TVD norL1-stable and we need to introduce the second-order family scheme

Cn�1
i � Cn

i ÿ lu�i DCn
iÿ1=2 ÿ

l

2
u�i ��1 ÿ lu�i�1=2�DCn

i�1=2 ÿ �1 ÿ lu�iÿ1=2�DCn
iÿ1=2�

� lu�i �a
�

i�1=2�1 ÿ lu�i�1=2�DCn
i�1=2 ÿ a�i�1=2�1 ÿ lu�iÿ1=2�DCn

iÿ1=2 ÿ a�iÿ1=2�1 ÿ lu�iÿ1=2�DCn
iÿ1=2

� a�iÿ1=2�1 ÿ lu�iÿ3=2�DCn
iÿ3=2�

� luÿi DCn
i�1=2 ÿ

l

2
uÿi ��1 ÿ luÿi�1=2�DCn

i�1=2 ÿ �1 ÿ luiÿ1=2�DCn
iÿ1=2�

ÿ luÿi �a
ÿ

i�1=2�1 ÿ luÿi�3=2�DCn
i�3=2 ÿ aÿi�1=2�1 ÿ luÿi�1=2�DCn

i�1=2

ÿ aÿiÿ1=2�1 ÿ luÿi�1=2�DCn
i�1=2 � aÿiÿ1=2�1 ÿ luÿiÿ1=2�DCn

iÿ1=2�: �20�

176 CH. H. BRUNEAU, P. FABRIE AND P. RASETARINERA



Thus, following the same procedure, equation (18) becomes

Cn�1
i � Cn

i ÿ lu�i DCn
iÿ1=2 ÿ

l

2
u�i ��1 ÿ lu�i�1=2�DCn

i�1=2 ÿ �1 ÿ lu�i�1=2�DCn
iÿ1=2�

�

l

2
u�i �2a

�

i�1=2�1 ÿ lu�i�1=2��1 ÿ r�n
i�1=2�DCn

i�1=2 ÿ 2a�iÿ1=2�1 ÿ lu�iÿ1=2��1 ÿ r�n
iÿ1=2�DCn

iÿ1=2�

�

l

2
uÿi �2a

ÿ

i�1=2�1 ÿ luÿi�1=2��1 ÿ rÿn
i�1=2�DCn

i�1=2 ÿ 2aÿiÿ1=2�1 ÿ luÿiÿ1=2��1 ÿ rÿn
iÿ1=2�DCn

iÿ1=2�;

�21�

where

r�n
i�1=2 �

�1 ÿ lu�iÿ1=2�DCn
iÿ1=2

�1 ÿ lu�i�1=2�DCn
i�1=2

; rÿn
i�1=2 �

�1 ÿ luÿi�3=2�DCn
i�3=2

�1 ÿ luÿi�1=2�DCn
i�1=2

;

and we replace thea�i�1=2 by some functions�a�n
i�1=2 depending onr�n

i�1=2 to obtain a TVD and
L1-stable scheme.

Proposition 2

If

�a�n
i�1=2 � min

j1 ÿ r�n
i�1=2j

2
;

1

2j1 ÿ r�n
i�1=2j

 !

;

then the resulting scheme is TVD andL1-stable under the CFL conditionlkuk
1

4 1.

Proof. We write (21) as

Cn�1
i � Cn

i ÿ lu�i DCn
iÿ1=2 ÿ

l

2
u�i ��1 ÿ lu�i�1=2�j

�n
i�1=2DCn

i�1=2 ÿ �1 ÿ lu�iÿ1=2�j
�n
iÿ1=2DCn

iÿ1=2�

� luÿi DCn
i�1=2 ÿ

l

2
uÿi ��1 ÿ luÿi�1=2�j

ÿn
i�1=2DCn

i�1=2 ÿ �1 ÿ luÿiÿ1=2�j
ÿn
iÿ1=2DCn

iÿ1=2�:

Figure 3. Solution on coarse mesh with third-order Takacs (left) and new (right) schemes
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Figure 4. Comparison of results obtained with minmod (top left), superbee (top right), Van Leer (bottom left) and present
(bottom right) limiters
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Thus, using the Lemma, we can conclude as for the proof of Proposition 1 that the scheme is TVD
andL1-stable under the CFL conditionlkuk

1

4 1.

When using a coarse mesh, the third-order Takacs scheme can produce dispersive solutions,
whereas the new scheme avoids non-expected negative values. This can be seen inFigure 3for the
same data as in Figure 2, except thatdx � 0�02 instead of 0�01.

Remark

Starting with the Lax–Wendroff scheme, several limiters have been found that satisfy the
hypotheses of the Lemma, e.g.

jr�r� � max�0;min�rr; 1�;min�r; r��;

with 14r4 2, which gives the well-known minmod and superbee limiters forr � 1 and 2
respectively,12 or

j�r� �
r � jrj

1 � jrj
;

introduced by Van Leer.12 Here the limiterj�r� is naturally derived from the Takacs scheme.
Numerical test performed with the same data as in Figure 2 show that this limiter is better than the
above three (Figure 4). To confirm this result, we performed some numerical experiments on three
benchmark test problems gathered by Leonard.13 They correspond to the transport of a unit step, an
isolated sine-squared wave and a semi-ellipse with constant velocityu � 1. The results obtained with

Figure 5. Comparison of results obtained on three benchmark problems atNCFL �

1
2 with minmod (top left), superbee (top

right), Van Leer (bottom left) and present (bottom right) limiters
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exactly the same parameters as used by Leonard are plotted inFigure 5. They show again the
accuracy of the new limiter, which appears to be a good compromise between the Van Leer and
superbee limiters.

5. THE 2D EXTENSION

We consider now the 2D transport equation for a uniform flowU � �ux; uy�
T, namely

@C

@t
� U � HC � 0: �22�

The two-dimensional scheme is derived by a Taylor expansion of the solution of (22) where the terms
of order strictly greater, than two are neglected:

C�x; y; t � dt� � C�x; y; t� ÿ dtU � HC�x; y; t� �
dt2

2
div�D*�U� � HC�x; y; t�� � o�dt3

�;

with

D�

�U� �

u2
x uxuy

uxuy u2
y

� �

:

We point out that the extra-diagonal terms in theD* tensor couple both directions and avoids strong
grid orientation effects. Thus all fluxes are limited with (19) and we get for a positive velocity14

Cn�1
i; j � Cn

i; j ÿ lxux 1 ÿ
ly

2
uy

� �

DCn
iÿ1=2; j ÿ lyuy 1 ÿ

lx

2
ux

� �

DCn
i; jÿ1=2

ÿ

lxly

2
uxuy�DCn

iÿ1=2; jÿ1

� DCn
iÿ1; jÿ1=2� ÿ

lx

2
�Fn

i�1=2; j ÿ Fn
iÿ1=2; j� ÿ

ly

2
�Fn

i; j�1=2 ÿ Fn
i; jÿ1=2�;

wherelx � dt=dx; ly � dt=dy and

Fn
i�1=2; j � ux 1 ÿ max lxux; lyuy

ÿ �

ÿ

ly

2
uy

� �

j�ri�1=2; j�DCn
i�1=2; j �

ly

2
uxuyj�ri�1=2; jÿ1�DCn

i�1=2; jÿ1;

Fn
i; j�1=2 � uy 1 ÿ max lxux; lyuy

ÿ �

ÿ

lx

2
ux

� �

j�ri; j�1=2�DCn
i; j�1;2 �

lx

2
uxuyj�riÿ1; j�1=2�DCn

iÿ1; j�1=2;

with

ri�1=2; j �
DCiÿ1=2; j

DCi�1=2; j
; ri; j�1=2 �

DCi; jÿ1=2

DCi; j�1=2
:

Remarks

This scheme isL1-stable under the CFL conditionmax�lxux; lyuy�4
2
3. Moreover, the extension

whenU depends on�x; y� is straightforward.

6. NUMERICAL TESTS

The 1D numerical tests are discussed on a model problem whose solution is known in order to better
compare the performance of the various schemes. We solve equation (1) in the domain (ÿ1, 1) with
u�x� � A�1 ÿ Bx�, whereA andB are some constants andB is non-negative.

The initial data are given by

C�x; 0� � a0 exp�ÿ�b0x � c0�
2
�
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and the exact solution is written as

C�x; t� � a�t� exp�ÿ�b�t�x � c�t��2�;

wherea�t�; b�t� andc�t� are three functions given by the system of differential equations

da

dt
ÿ 2c

dc

dt
ÿ 2Abc ÿ 2nb2

� 4nb2c2

� �

a � 0;

db

dt
� ABb � 2nb3

� 0;

dc

dt
� bÿ1 db

dt
� AB � 4nb2

� �

c � Ab;

Figure 6. Numerical results with new flux limiter (left) and Holly–Preissmann (right) schemes

Figure 7. Numerical results with new flux limiter (left) and Holly–Preissmann (right) schemes
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with a�0� � a0 � 1; b�0� � b0 � 10 andc�0� � c0 � 1. The solution of the above equations is

a�t� �
�jAjB�1=2 exp�ABt�

jÿ200n� �200n� AB� exp�2ABt�j1=2 ;

b�T� �
10�jAjB�1=2

jÿ200n� �200n� AB� exp�2ABt�j1=2 ;

c�t� �
10jAj1=2

�ÿ1 � exp�ABt��

jÿ200n� �200n� AB� exp�2ABt�j1=2B1=2
;

which reduces to

a�t� � 1=�400nt � 1�1=2
; b�t� � 10=�400nt � 1�1=2

; c�t� � Atb�t�

whenB � 0 (u is a constant function).
For the tests we taken small, i.e.n� kA�1 ÿ Bx�k

1

dx=2.
Whenu is a constant function, it is well known that all the schemes give the exact solution for a

CFL numberNCFL � 1. We takeu � 1; n small in front ofu �n � 10ÿ4), a coarse mesh�dx � 0�02)
and NCFL �

1
2. Our new scheme produces results close to those obtained by the Holly–Preissmann

backward characteristics method (Figure 6).
When the function u is equal to u�x� � 1 ÿ 2x, the results obtained withNCFL � 1

�max04 x4 1 ju�x�jdt=dx4 1� on a medium mesh�dx � 0�01� and a small diffusion term�n � 10ÿ4
�

are very good. The new flux limiter scheme yields almost the exact solution except at the extrenum
(Figure 7).

A 2D numerical test is performed on a domain (0, 1)6 (0, 1) withdx � dy � 0�01 A 2D square of
size10 dx is advected by a diagonal uniform flowux � uy � 0�5. Figure 8shows the initial condition
and the approximate solution att � 1�3 computed withNCFL � 1. We see that there are no grid
orientation effects and only a weak diffusion.

Figure 8. Transport of 2D square with new flux limiter scheme
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7. CONCLUSIONS

From a family of second- and third-order Lax–Wendroff-type schemes we build a TVD scheme
corresponding to a new limiter that is more efficient than the classical minmod, superbee and Van
Leer limiters. The results obtained with this scheme are close to those produced by the Holly–
Preissmann backward characteristic method. However, our scheme is much easier to extend to higher
dimensions.
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